Wald und Klima
Vorwort

Vegetation und Klima, Natürlich und anthropogen beeinflusste Änderungen der Vegetation
- 1. Einleitung
- 2. Grundlegende Faktoren, die die Vegetation beeinflussen
- 3. Einteilung der Vegetation nach klimatischen Gesichtspunkten
- 4. Historische Entwicklung von Vegetation und Klima
- 5. Konsequenzen für die heutige Gestaltung der Landschaft
- 6. Literatur

Von der Dendrochronologie zur Dendroökologie
Jahrringe als Umweltarchiv
- Einleitung und Grundlagen
- Die Daten - das europäische Netz von Jahrringchronologien
- Was macht man mit all den Daten?
- Dendroklimatologie
- Zeittliches und räumliches Verteilungsmuster subfossiler Eichen
- Mäkäferfraß und Waldgeschichte
- Holzanatomie
- Waldschadensforschung
- Danksagung
- Literatur

Ändert sich das Klima?
Welche Rolle spielt der Mensch?
- Klimagefinition und bisherige Klimaänderungen
- Steuerungselemente des Klimas
- Komponenten des Klimasystems
- Wasserkreislauf
- Strahlung
- Treibhauseffekt und Treibhausgase
- Methoden der Klimamodellierung
- Meeresspiegelanstieg
- Verursacher

Symposium Klima und Wald

Einführungsreferat von Dr. Klaus Offenberg

Sehr geehrte Damen und Herren,

Wald und Klima, ein Thema, das aus der Sicht der Wald- oder Forstgeschichte, aber auch aus der Sicht der Gegenwart und Zukunft betrachtet werden kann und zur Zeit hochaktuell ist. Hier soll nun heute versucht werden Geschichte, Gegenwart und Zukunft miteinander zu verbinden, wobei der Schwerpunkt, wie kann es anders sein, bei der Geschichte liegen soll.

Der Wald beeinflusst das Klima, das Klima beeinflusst aber auch den Wald.

Bevor wir Menschen großflächig in das Ökosystem Wald eingriffen, war der Wald ein ausgleichender Faktor für das Klima. Das gilt für Mitteleuropa, das gilt heute noch für die Tropen oder die borealen Wälder in Skandinavien und Asien.


Denn so war meine Überlegung, nur extreme Witterungsercheinungen können den Wald oder einen einzelnen Baum nachhaltig Schaden zufügen. Normale Winter, normale Sommer ohne große Kälte, Hitze, Regen, Eis oder Strom erträgt der Wald sicher einfacher als das Gegensteil.

Die Daten, die ich zusammengestellt habe, beginnen um 1200, ein Datum, das mit dem Alter einer solitären Eiche im Kreis Steinfurt zu tun hat. Diese Eiche soll angeblich 800 Jahre alt sein. Meine Frage war, wieviel Witterungshilfen muss der Baum in 800 Jahren aushalten? Waren es drei oder zehn im Jahrhundert, oder vielleicht mehr?

Zum Ergebnis:


Die Einführung in das Thema mit besonderem Blick auf Klimaregionen und Vegetation gibt Dr. Helmut Dallitz von der Universität Bielefeld.

Es folgt das Referat von Dr. Hubertus Leuschner.

Nach der Mittagspause wird der Klimaspezialist vom Deutschen Wetterdienst, Diplom Meteorologe Ulrich Otte, uns aus der Vergangenheit in die Gegenwart und Zukunft führen. Da tauchen dann so Fragen auf, ob wir eine ganz andere Baumartenwahl vornehmen müssen.

Vegetation und Klima
Natürliche und anthropogen beeinflusste Änderungen der Vegetation

Dr. Helmut Dalitz, Fakultät für Biologie, Abteilung Ökologie, Universität Bielefeld

1. Einleitung


Mitteleuropa kann auf eine ca. 10000-jährige Neubesiedlungsgeschichte durch Pflanzen seit der letzten Eiszeit zurückblicken, die in diesem Zeitraum durchaus nicht linear verlaufen ist. Dies unterscheidet Mitteleuropa zum Beispiel sehr deutlich vom tropischen Regenwald Amazons, der weitgehend unbeinflußt durch die Eiszeiten geblieben ist. Ob diese Neubesiedlungsgeschichte bereits abgeschlossen ist, bzw. wie das heutige Klima die Besiedlungsdynamik modifiziert, ist eine der Fragen, die unmittelbar Einfluß auf die Entscheidung haben sollten, in welcher Weise der Mensch in ein Gebiet eingreifen sollte.

In einem so dicht besiedelten Gebiet wie der Bundesrepublik, das selbst zur Verfü­gung stehenden Räume in vielfältiger Weise nutzt, und das über nur wenige Einzelstandorte verfügt, die vom Menschen unbe­influßt geblieben sind, stellt sich daher die Frage, in welcher Weise die bereits erfolg­ten Eingriffe weitergeführt werden. Eine Abkehr z.B. der Forstwirtschaft von reinen Monokulturen zu sogenannten naturnahen Forsten hat bereits begonnen und wirft nun Fragen auf, wie naturnaher Forst aussehen soll, wie ökonomischer Nutzen bei gleichzeitiger Anwendung ökologischer Erkenntnisse möglich ist und wie Bedürfnisse der Bewölkung z.B. nach Erholung angemessen berücksichtigt werden können. Hierbei spielen natürlich auch soziologische Fragen eine nicht unerhebliche Rolle. Auch kann ein naturnaher Waldbau durchaus auf Widerstand stoßen, wenn z.B. der Totholzanteil im Wald ein Maß überschreitet, das den Ästhetik (historisch gewachsen?) Ansprüchen der Bürger widerspricht.

In diesem Betrag wird versucht, die ökologischen Grundkenntnisse des Verhältnisses zwischen Klima und Vegetation zu beschreiben und einen kurzen Überblick über die Klimageschichte Mitteleuropas bzw. einer tropischen Region (Amazonien) zu geben. Darüberhinaus werden einige der bereits angesprochenen Fragen neu aufgegriffen und in den ökologischen Kontext ge­stellt.

2. Grundlegende Faktoren, die die Vegetation beeinflussen


![Diagramm](image-url)


Die Einflußfaktoren, die durch den Begriff „Klima“ subsumiert werden, wirken je nach Lage des Standortes auf der Erdkugel in verschiedenen Weise (und werden z.B. in Walter & Breckle 1999 ausführlich dargestellt):

A) Strahlung und Licht:

B) Temperatur:

C) Wasser:
3. Einteilung der Vegetation nach klimatischen Gesichtspunkten


4. Historische Entwicklung von Vegetation und Klima

pen. Im weiteren Verlauf der Erdgeschichte, d. h. im Tertiär setzte dann die Entstehung und Ausbreitung tropischer Regenwälder ein, die an deutlich humide Klima gebunden waren und sind.


Abb. 5: Typische Vegetation im mittleren Bereich der Atacama-Wüste bei Chucumata, Chile. Bei einem episodischen Regen gekeimte Pflanze, die nur in einer Rinne genügend Wasser für ein weiteres Wachstum gefunden hat.

Abb. 6: Die kreidezeitliche Ausbreitung der Angiospermen (schwarz) in der Vegetation der Erde auf Kosten der übrigen Zonen (Situation etwa in der Meridionalen Zone).

Abb. 7: Untergeschoss in einem tropischen, prämontanen Bergregenwald Costa Ricas. Höhe 800 m; jährliche Niederschläge über 4000 mm; Jahresmitteltemperatur bei 20 °C.