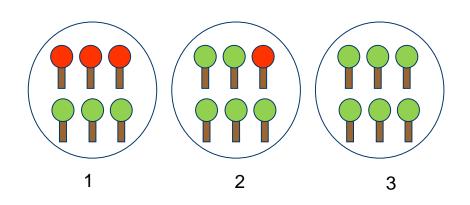


Genetische Anpassung von Waldbäumen unter Gesichtspunkten des Klimawandels

Oliver Gailing
Abteilung Forstgenetik und Forstpflanzenzüchtung

Genetische Anpassung von Waldbäumen unter Gesichtspunkten des Klimawandels


 Anpassungsmechanismen von Waldbäumen an den Klimawandel

Genetische Basis der evolutionären Anpassung

Grundlagen

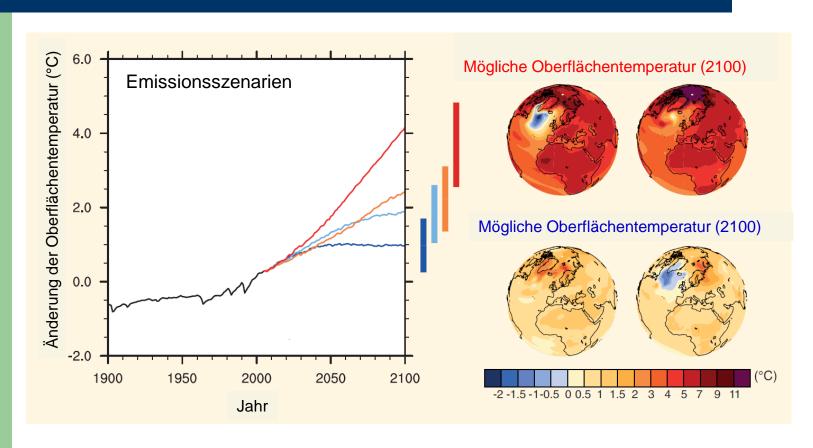
Genetische Variation

- Messung genetischer Variation
- Evolutionsfaktoren
 - Selektion
 - Migration
 - Drift
 - Mutation

Gliederung

- Klimamodelle
- Anpassung an den Klimawandel
- Genetische Basis der evolutionären Anpassung
- Zusammenfassung und Ausblick

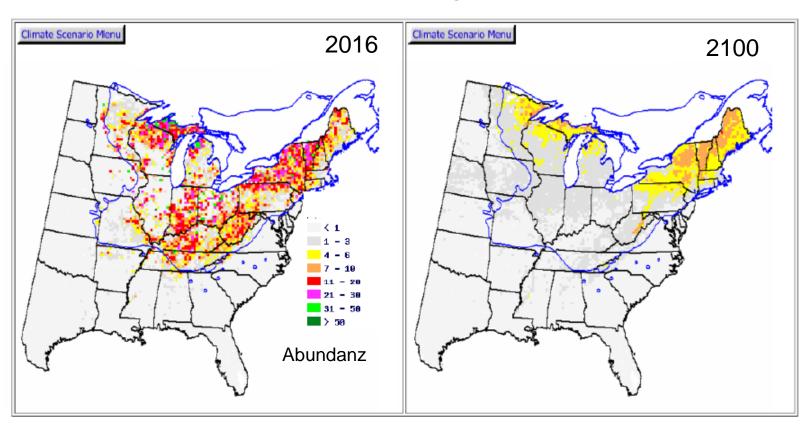
Gliederung


- Klimamodelle
- Anpassung an den Klimawandel
- Genetische Basis der evolutionären Anpassung
- Zusammenfassung und Ausblick

Globale Klimamodelle

Änderung der Erdoberflächentemperatur von 1901-2012

Globale Klimamodelle



Quelle: IPCC (2013)

Modellierung bioklimatischer Areale – Acer saccharum

Inventurdaten

Prognose – Hohes Emmissionsszenario

Gliederung

- Klimamodelle
- Anpassung an den Klimawandel
- Genetische Basis der evolutionären Anpassung
- Zusammenfassung und Ausblick

Biotische und abiotische Stressfaktoren

- Trockenstress
- Temperaturerhöhung
- Wetterextreme
- Pathogene (Pilze, Schadinsekten)

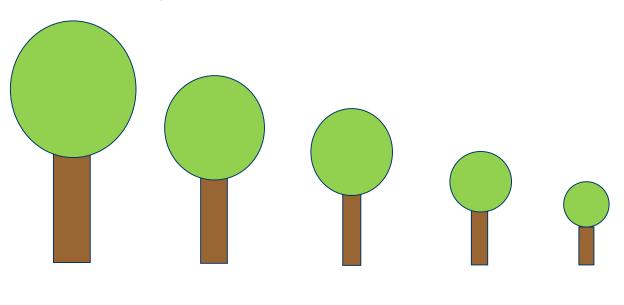
Asiatischer Eschenprachtkäfer, Agrilus planipennis

. Cappaert, MSU

Adaptive Merkmale

- Trockenresistenz Wassernutzungseffizienz
- Kälteresistenz Knospenbildung, Blattaustrieb
- Pathogenresistenz

Anpassung an den Klimawandel

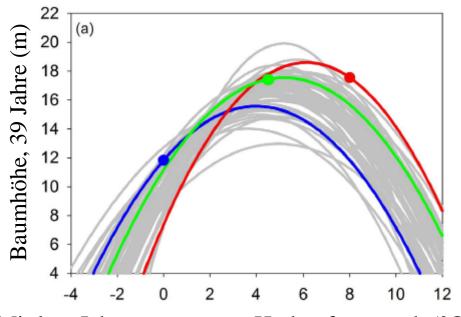

 Phänotypische Plastizität durch physiologische Anpassung

Evolutionäre Anpassung durch natürliche Selektion

Migration/Genfluss - Samen, Pollen

Phänotypische Plastizität

Ein Genotyp – unterschiedliche Umwelten



Wasserverfügbarkeit

Photo: Oliver Gailing

Phänotypische Plastizität

Mittlere Jahrestemperatur, Herkunftsversuch (°C)

Pedlar & McKenney (2017)

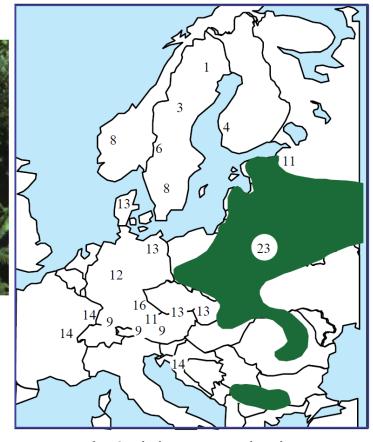
Pinus banksiana, Baraga Plains, Michigan, Photo: O. Gailing

Evolutionäre Anpassung

Änderung genetischer Variationsmuster durch natürliche Selektion

Hohe Genetische Variation

Hohes Evolutionäres Anpassungspotential

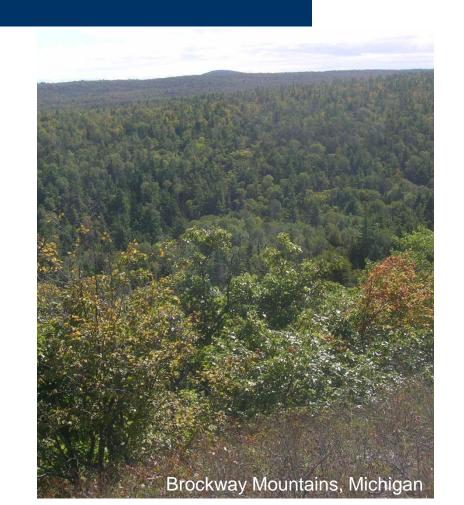

Keine Evolution ohne genetische Variation!

Evolutionäre Anpassung - Blattaustrieb

Picea abies Herkünfte in Schweden (59° 30' nördliche Breite)

Quelle: Eriksson et al. (2006)

früh (1) - spät (23)

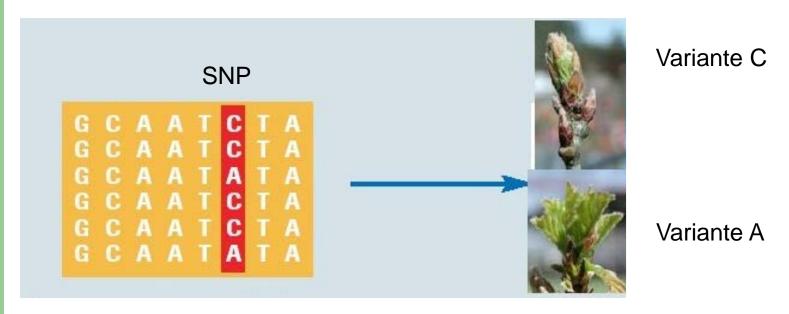

Foto: Oliver Gailing

Migration und Genfluss

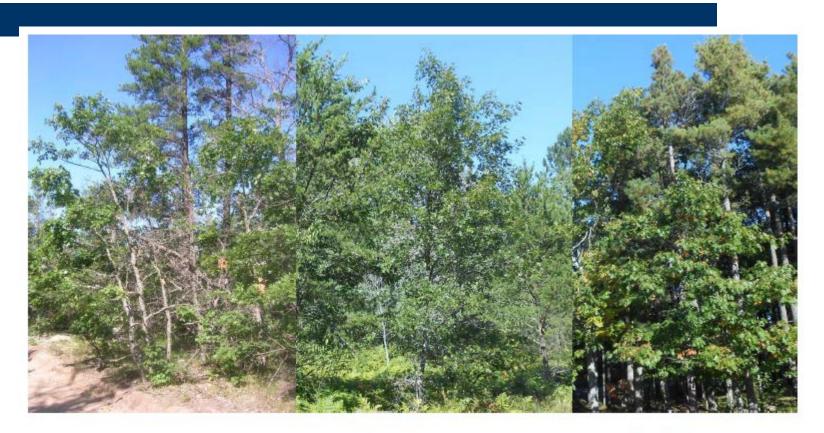
 Seltene Fernverbreitung der Samen (diploider Embryo)

 Effiziente Fernverbreitung von Pollen (♂ Gamet)

 Migrationsraten: 100 - 700 m pro Jahr

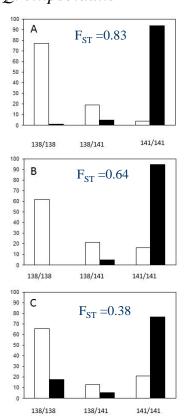


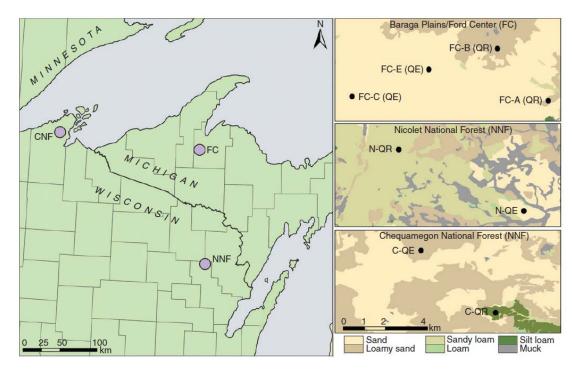
Gliederung


- Klimamodelle
- Anpassung an den Klimawandel
- Genetische Basis der evolutionären Anpassung
- Zusammenfassung und Ausblick

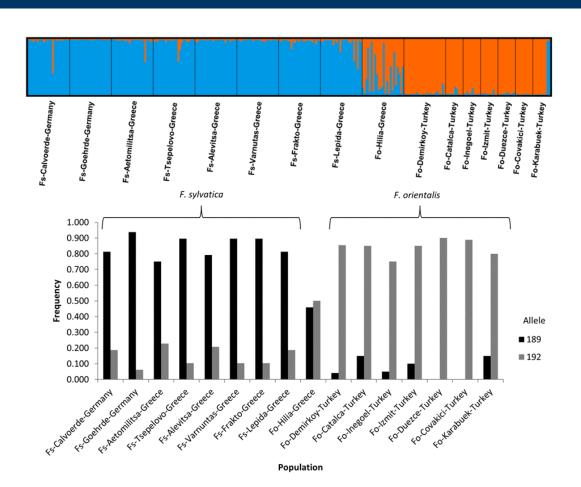
Genetische Basis adaptiver Variation

<u>Assoziationsstudien</u>




Variation einzelner Nukleotid-Bausteine Single Nucleotide Polymorphism (SNP)

Q. ellipsoidalis Contact zone Q. rubra


Lind-Riehl, J., Sullivan, A.R. & O. Gailing. 2014. Evidence for selection on a CONSTANS-like gene between two red oak species. Annals of Botany 113 (6): 967-975.

Fagus sylvatica, Hainich

Fagus orientalis, Alborsgebirge, Iran

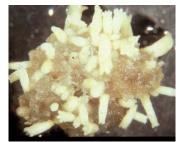
Epigenetische Effekte - Picea abies

Temperatur während der Embryonalentwicklung

18 °C (normal)

Frühe Knospenbildung

Hohe Frosthärte


23 °C (+ 5 °C)

Späte Knospenbildung

Geringe Frosthärte

Somatische Embryogenese

Gliederung

- Klimamodelle
- Anpassung an den Klimawandel
- Genetische Basis der evolutionären Anpassung
- Zusammenfassung und Ausblick

Zusammenfassung

- Beträchtliche adaptive genetische Variation und phänotypische Plastizität
- Hohe Anpassungsfähigkeit an variable Umweltbedingungen
- Hohe Ausbreitungskapazität

Prognose

 Auswirkungen sind abhängig vom Anpassungspotential und der Ausbreitungskapazität einzelner Baumarten

 Negative Auswirkungen vor Allem für Arten mit geringer Trocken- und Wärmeresistenz

Ausblick

Sind die evolutionäre Anpassungsfähigkeit und die Ausbreitungskapazität ausreichend für die langfristige Erhaltung und hohe Produktivität unserer Wälder?

Maßnahmen

Wahl geeigneter Herkünfte und Baumarten

Förderung einer hohen genetischen Diversität

Literatur

- Eriksson, G., Ekberg, I., and Clapham, D. 2006. An introduction to Forest Genetics. Second edition. SLU, Swedish University of Agricultural Sciences, Uppsala.
- IPCC. 2013. Summary for Policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, Y. Nauels, Y. Xia, V. Bex, and P. M. Midgley, editors. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
- Lind-Riehl, J.F., Sullivan, A.R. and Gailing, O. 2014. Evidence for selection on a CONSTANS-like gene between two red oak species. Ann. Bot. 113: 967-975.
- Prasad, A.M., Iverson, L.R., Matthews, S., and Peters, M. 2007. A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States [database]. Page: http://www.nrs.fs.fed.us/atlas/tree. Northern Research Station, USDA Forest Service, Delaware, Ohio.
- Pedlar, J.H. and McKenney, D.W. 2017. Assessing the anticipated growth response of northern conifer populations to a warming climate. Sci Rep 7: 43881.
- Skrøppa, T., Tollefsrud, M.M., Sperisen, C., and Johnsen, O. 2010. Rapid change in adaptive performance from one generation to the next in *Picea abies*-Central European trees in a Nordic environment. Tree Genet. Genomes 6: 93-99.